Why does 1/x integrate to lnx?

If we let y = lnx, we then know that x = ey. By differentiating both sides of this equation with respect to y we get:dx/dy = ey, as the exponential function differentiates to itself when differentiated with respect to its power.But, as we noted earlier, x = ey, so we can substitute this in to get dx/dy = x.We can then take reciprocals of both sides to get dy/dx = 1/x.In other words the derivative of lnx is 1/x.But we know that integration is the opposite of differentiation (Fundamental Theorem of Calculus), giving us:The integral of 1/x is lnx.

Answered by Chris L. Maths tutor

18108 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate sin^4(x)


Prove that √2 is irrational


How do you differentiate y=cox(x)/sin(x)?


The graph with equation y= x^3 - 6x^2 + 11x - 6 intersects the x axis at 1, find the other 2 points at which the graph intersects the x axis


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences