Why does 1/x integrate to lnx?

If we let y = lnx, we then know that x = ey. By differentiating both sides of this equation with respect to y we get:dx/dy = ey, as the exponential function differentiates to itself when differentiated with respect to its power.But, as we noted earlier, x = ey, so we can substitute this in to get dx/dy = x.We can then take reciprocals of both sides to get dy/dx = 1/x.In other words the derivative of lnx is 1/x.But we know that integration is the opposite of differentiation (Fundamental Theorem of Calculus), giving us:The integral of 1/x is lnx.

CL
Answered by Chris L. Maths tutor

24778 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 2-3i is a root to the equation z^3+pz^2+qz-13p=0, show that p=-2 and q=5.


Find the stationary points of y = 4(x^2 - 4)^3


Differentiate with respect to x: (4x^2+3x+9)


Integrate 5sinxcosx + 5cosx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning