Why does 1/x integrate to lnx?

If we let y = lnx, we then know that x = ey. By differentiating both sides of this equation with respect to y we get:dx/dy = ey, as the exponential function differentiates to itself when differentiated with respect to its power.But, as we noted earlier, x = ey, so we can substitute this in to get dx/dy = x.We can then take reciprocals of both sides to get dy/dx = 1/x.In other words the derivative of lnx is 1/x.But we know that integration is the opposite of differentiation (Fundamental Theorem of Calculus), giving us:The integral of 1/x is lnx.

CL
Answered by Chris L. Maths tutor

22200 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 5(x + 2)/(x + 1)(x + 6) with respect to x


Using the substitution of u=6x+5 find the value of the area under the curve f(x)=(2x-3)(6x+%)^1/2 bounded between x=1 and x=1/2 to 4 decimal places.


State the interval for which sin x is a decreasing function for 0⁰ ≤ x ≤ 360⁰.


Use the formula 5p + 2q = t to find the value of q when p = 4 and t = 24. 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning