Why does 1/x integrate to lnx?

If we let y = lnx, we then know that x = ey. By differentiating both sides of this equation with respect to y we get:dx/dy = ey, as the exponential function differentiates to itself when differentiated with respect to its power.But, as we noted earlier, x = ey, so we can substitute this in to get dx/dy = x.We can then take reciprocals of both sides to get dy/dx = 1/x.In other words the derivative of lnx is 1/x.But we know that integration is the opposite of differentiation (Fundamental Theorem of Calculus), giving us:The integral of 1/x is lnx.

CL
Answered by Chris L. Maths tutor

19661 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of arctan(x)


A curve has the equation y = (1/3)x^3 + 4x^2 + 12x +3. Find the coordinates of each turning point and determine their nature.


A curve has equation y^3+2xy+x^2-5=0. Find dy/dx.


the graph y = 3/((1-4x)*(1/2)) has a shaded region between x = 0 and x = 2, find area of the region


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences