Prove that the sum of four consecutive whole numbers will always be even.

First, check you understand what the question's asking by determining the key words. Next, try a couple of examples to convince yourself that the statement does in fact work, i.e 1+2+3+4=10, which is even.
Now, rather than specific examples let's take the number 'x'. The next consecutive whole number after x will be x+1, after that will be x+2 and so on. We can now call our four consecutive numbers x, x+1, x+2, x+3.
So, when we 'sum' these 4 numbers we get;
x + (x+1) + (x+2) + (x+3) = (x+x+x+x) + (1+2+3) = 4x + 6.
If we look carefully at '4x + 6', we should be able to factorise this quite easily. If we rewrite it as the following;
4x+6 = 2(2x+3).
We can see here that the answer is even, as it will always be a multiple of 2, no matter what value we take 'x' to be.

Answered by Emma B. Maths tutor

22726 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the inverse of the following function: g(x) = 4/(3-x)


Solve the simultaneous equation: 2x +y =18; x-y=6. (3)


Sue has a cow farm. Her cows produced on average 25 litres of milk every day for 55 days. Sue bottles the milk in 1/2 litre bottles. How many bottles will Sue need to bottle all the milk.


Solve the simultaneous equations : x ^2+2y=9, y=x+3 to find solutions for x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences