Why do we need the constant of integration?

Consider three simple functions F(x)=2x, G(x)=2x-6, H(x)=2x + π/2. We can differentiate these functions with respect to x to get F’(x)=f(x)=2, G’(x)=g(x)=2, H’(x)=h(x)=2. Clearly the derivatives of these functions are all equal to 2, but the functions are not the same (a simple graph would convince us). Going backwards if we’re given u(x)=2 and we are asked to find the antiderivative of u(x) (i.e. a function U(x) such that U’(x)=u(x)) we cannot simply write that U(x)=2x since that would give us only one out of the infinite antiderivatives. Hence, we are looking for a family of functions of the form U(x)=2x+C where C is any real number. To convince ourselves this is a solution we can differentiate with respect to x which gives U’(x)=u(x)=(2x+C)’=(2x)’+(C)’=2*1+0=2.

Answered by Panoraia C. Maths tutor

2698 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a circle is x^2-6x+y^2+4y=12. Complete the square to find the centre and radius of the circle.


Demonstrate that (2^n)-1 is not a perfect square for any n>2, n ∈ N.


Simplify (7+sqrt(5))/(sqrt(5)-1), leaving the answer in the form a+b*sqrt(5)


Using the trigonometric identity for tan(A + B), prove that tan(3x)=(3tan(x)-tan^3(x))/(1-3tan^2(x))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences