Complete the square for x^2 + x - 6.

First, let us separate the constant term and complete the square for (x^2 + 1x).
x^2 + x - 6 = (x^2 + x) - 6
Now, let us halve the coefficient of x.
0.5 of +1 = +0.5
Write (x )^2 with half the coefficient of x before the end bracket then subtract the square of half the coefficient of x.
(x^2 + x) - 6 = [(x + 0.5)^2 - 0.5^2] - 6 = (x + 0.5)^2 - 0.25 - 6 = (x + 0.5)^2 - 6.25,
which is the required completed square form (x + p)^2 + q.
Often, a GCSE question will ask what the minimum point of the graph is - and the minimum value of y is -6.25, and occurs when (x + 0.5)^2 = 0 so x=-0.5. Hence, the minimum point is (-0.5, -6.25).

LT
Answered by Larra T. Maths tutor

3264 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that (x + 4)(x + 5)(x + 6) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


what is the value of 27 to the power of -2/3


A bag contains 5 blue marbles and 5 red marbles. If marbles are NOT replaced after being selected from the bag, what is the probability (in percentage) of picking 2 red marbles? Give your answer to one decimal place.


Write down the value of 27^(-2/3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning