Complete the square for x^2 + x - 6.

First, let us separate the constant term and complete the square for (x^2 + 1x).
x^2 + x - 6 = (x^2 + x) - 6
Now, let us halve the coefficient of x.
0.5 of +1 = +0.5
Write (x )^2 with half the coefficient of x before the end bracket then subtract the square of half the coefficient of x.
(x^2 + x) - 6 = [(x + 0.5)^2 - 0.5^2] - 6 = (x + 0.5)^2 - 0.25 - 6 = (x + 0.5)^2 - 6.25,
which is the required completed square form (x + p)^2 + q.
Often, a GCSE question will ask what the minimum point of the graph is - and the minimum value of y is -6.25, and occurs when (x + 0.5)^2 = 0 so x=-0.5. Hence, the minimum point is (-0.5, -6.25).

LT
Answered by Larra T. Maths tutor

2956 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation (3x**2 + 8x + 4) = 0


How to find the equation of a line from a graph?


How do you break down a wordy question (e.g. Aled has three concrete slabs. Two slabs square, of length x, & the third rectangular of dimensions 1m & x+1m. Show 2x^2 +x-6=0 & Solve this)


How do you find the points of intersection of two curves?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning