How would you use the Integration Factor method to solve an ordinary first-order linear differential equation?

The word "ordinary" means that there are only two variables, "first-order" means that the highest derivative is the first derivative and "linear" means that the highest power of the function variable is 1. Therefore, the Integration Factor method is applicable.First, you get values with the function variable (y for dy/dx) on the left and the parameter variable (x for dy/dx) on the right. You integrate the coefficient of y with respect to x to get the "Integration Factor (IF)". Then, multiply both sides of the differential equation by IF. Here, you get y multiplied by IF equal to the integral of the right hand side of the new differential equation. Solve the integral and divide by IF to get y(x).

KC
Answered by Kelvin C. Further Mathematics tutor

2740 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning