Can you differentiate y = (x^4 + x)^10

To solve this equation we will need to apply the chain rule. This states that:dy/dx = dy/du * du/dxTo make the question simpler, we shall let u = x4+ x, and so:y = u10 and u = x4+ xBoth of these equations can be differentiated to give:dy/du = 10u9 and du/dx = 4x3+ 1Using the chain rule formula written above, dy/dx = dy/du * du/dx = 10u9 * (4x3+ 1) = 10(4x3+ 1)(x4+ x)9

SA
Answered by Shaan A. Maths tutor

3901 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


How do I determine the domain and range of a composite function, fg(x) ?


Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


Solve the Equation: 2ln(x)−ln (7x)=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning