Can you differentiate y = (x^4 + x)^10

To solve this equation we will need to apply the chain rule. This states that:dy/dx = dy/du * du/dxTo make the question simpler, we shall let u = x4+ x, and so:y = u10 and u = x4+ xBoth of these equations can be differentiated to give:dy/du = 10u9 and du/dx = 4x3+ 1Using the chain rule formula written above, dy/dx = dy/du * du/dx = 10u9 * (4x3+ 1) = 10(4x3+ 1)(x4+ x)9

SA
Answered by Shaan A. Maths tutor

3850 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

make into a cartesian equation= x=ln(t+3) y= 1/t+5


Use integration by parts to evaluate: ∫xsin(x) dx.


Find the equation of the tangent to the curve x^3+yx^2=1 at the point (1,0).


How to do Integration by Parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning