Can you differentiate y = (x^4 + x)^10

To solve this equation we will need to apply the chain rule. This states that:dy/dx = dy/du * du/dxTo make the question simpler, we shall let u = x4+ x, and so:y = u10 and u = x4+ xBoth of these equations can be differentiated to give:dy/du = 10u9 and du/dx = 4x3+ 1Using the chain rule formula written above, dy/dx = dy/du * du/dx = 10u9 * (4x3+ 1) = 10(4x3+ 1)(x4+ x)9

SA
Answered by Shaan A. Maths tutor

3533 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the necessary conditions for a random variable to have a binomial distribution?


Solve the inequality x < 4 - |2x + 1|.


Use integration by parts to find the integral of ln x by taking ln x as the multiple of 1 and ln x


How do i solve differential equations?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences