Can you differentiate y = (x^4 + x)^10

To solve this equation we will need to apply the chain rule. This states that:dy/dx = dy/du * du/dxTo make the question simpler, we shall let u = x4+ x, and so:y = u10 and u = x4+ xBoth of these equations can be differentiated to give:dy/du = 10u9 and du/dx = 4x3+ 1Using the chain rule formula written above, dy/dx = dy/du * du/dx = 10u9 * (4x3+ 1) = 10(4x3+ 1)(x4+ x)9

Answered by Shaan A. Maths tutor

3187 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you integrate ln x


solve the differential equation dy/dx=(3x*exp(4y))/(7+(2x^(2))^(2) when y = 0, x = 2


Given y = 4x/(x^2 +5) find dy/dx, writing your answer as a single fraction in its simplest form


A small stone is projected verically upwards from a point O with a speed of 19.6ms^-1. Modeeling the stone as a particle moving freely under gravity find the time for which the stone is more than 14.6m above O


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences