Integrate $$\int xe^x \mathop{\mathrm{d}x}$$.

We use integration by parts. Set $u = x$ and $dv/dx = e^x$. This leads to $du/dx = 1$, and $v = e^x$. Then:\begin{align*}\int xe^x \mathop{\mathrm{d}x} &= xe^x - \int e^x \mathop{\mathrm{d}x}\&= xe^x - e^x.\end{align*}

Answered by Christopher N. Maths tutor

3417 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the exact solution to the following equation: ln(x) + ln(3) = ln(6)


a) Simplify 2ln(2x+1) - 10 = 0 b) Simplify 3^(x)*e^(4x) = e^(7)


Given that y=(4x-3)^3 x sin2x find dy/dx


f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences