Integrate $$\int xe^x \mathop{\mathrm{d}x}$$.

We use integration by parts. Set $u = x$ and $dv/dx = e^x$. This leads to $du/dx = 1$, and $v = e^x$. Then:\begin{align*}\int xe^x \mathop{\mathrm{d}x} &= xe^x - \int e^x \mathop{\mathrm{d}x}\&= xe^x - e^x.\end{align*}

Answered by Christopher N. Maths tutor

3472 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning points of the equation y=4x^3-9x^2+6x?


Curve C has equation x^2 - 3xy - 4y^2 + 64 = 0. a) find dy/dx in terms of x and y. b) find coordinates where dy/dx=0.


Use chain rule and implicit differentiation to find dy/dx for y^3 = 1 + 3*x^2, then show that they are equal


Find both stationary points for y= 4x^(3)-3x^(2)-60x+24. Also find the nature of those points.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences