How do I implicitly differentiate and why does it work? (Assuming understanding of differentiation)

Implicit differentiation can be used when you are asked to find dy/dx of a function that has not been written as y=f(x) e.g. y = x^2 - 1, and which cannot be rearranged as such. We can use the equation of a circle as an example, x^2 +y^2 = 25. In order to implicitly differentiate we have to differentiate each term with respect to x, this is straight forward for the x^2 and 25 terms but for any term which is a function of y we differentiate pretending that y is just another x term and then multiply that by dy/dx. e.g. y^2 -> 2ydy/dx. Once all the terms have been dealt with we can rearrange to find dy/dx.Why does this work? Let's consider what differentiating a function of y with respect to y looks like: df(y)/dy, but we need to find df(y)/dx so if we times df(y)/dy x dy/dx we can see that the product is now df(y)/dx for that term.

Answered by Sorcha O. Maths tutor

2713 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you intergrate basic algebra?


(FP3 question). Integrate 1/sqrt(3-4x-x^2).


Core 1 question: Draw the graph "y = 12 - x - x^2"


Show that r^2(r + 1)^2 - r^2(r - 1)^2 ≡ 4r^3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences