Find the 1st derivative of y = x^2 + 7x +3 and hence find the curves minima.

Firstly, we differentiate y = x2+7x+3 . This gives dy/dx = 2x+7.The minimum value occurs when dy/dx = 0. So find x and y when dy/dx=0. 2x+7=0 implies x= -3.5, which from the first equation means y = (-3.5)2 + 7*3.5 +3 = 39.75.Therefore, the minimum value has the position (-3.5, 39.75).

Answered by Connor W. Maths tutor

3353 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate the indefinite integral when the integrand function is tan(x).


How do I use numerical methods to find the root of the equation F(x) = 0?


Differentiate: y = 4x^3 - 5/x^2


Solve the equation 2(cos x)^ 2=2-sin x for 0 <=x<=180


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences