Differentiate (x^0.5)ln(x) with respect to x.

First it's helpful to write f(x) = (x^0.5)ln(x)The product rule is useful here, this may be written in the form (u(x)v(x))' = u(x)v'(x) + u'(x)v(x).Here we will take u(x) = x^0.5 and v(x) = ln(x), meaning f(x) = u(x)v(x). Now, remembering that x^0.5 is simply the square root of x, we find:u'(x) = 0.5x^(-0.5).Differentiating logs can sometimes be tricky, but here we have the simple case of ln(x):v'(x) = (1/x), I would recommend memorising this resultThrough substitution, f'(x) = (x^0.5)(1/x) + (0.5x^(-0.5))(ln(x)) = (x^(-0.5)) + (ln(x))/(2x^0.5) = (2 + ln(x))/(2*x^0.5)

CC
Answered by Connor C. Maths tutor

4238 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write down the values of (1) loga(a) and (2) loga(a^3) [(1) log base a, of a (2) log base a of (a^3)]


Let C : x^2-4x+2k be a parabola, with vertex m. By taking derivatives or otherwise discuss, as k varies, the coordinates of m and, accordingly, the number of solutions of the equation x^2-4x+2k=0. Illustrate your work with graphs


Solve the inequality |x - 2sqrt(2)| > |x - 4sqrt(2)|.


Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning