Differentiate (x^0.5)ln(x) with respect to x.

First it's helpful to write f(x) = (x^0.5)ln(x)The product rule is useful here, this may be written in the form (u(x)v(x))' = u(x)v'(x) + u'(x)v(x).Here we will take u(x) = x^0.5 and v(x) = ln(x), meaning f(x) = u(x)v(x). Now, remembering that x^0.5 is simply the square root of x, we find:u'(x) = 0.5x^(-0.5).Differentiating logs can sometimes be tricky, but here we have the simple case of ln(x):v'(x) = (1/x), I would recommend memorising this resultThrough substitution, f'(x) = (x^0.5)(1/x) + (0.5x^(-0.5))(ln(x)) = (x^(-0.5)) + (ln(x))/(2x^0.5) = (2 + ln(x))/(2*x^0.5)

Answered by Connor C. Maths tutor

3275 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Mechanics 1: How do you calculate the magnitude of impulse exerted on a particle during a collision of two particles, given their masses and velocities.


Differentiate the function f(x) = 2x^3 + (cos(x))^2 + e^x


Given that z = sin(x)/cos(x), use the quoitent rule to show that dZ/dx = sec^2(x)


Consider a differential equation where dx/dt = -axt. Find an equation for x(t).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences