a) A line passes through (0,9) and (3,12) write down the equation of this line . b) A line perpendicular to the line in part a passes through the point (3,14) write the equation of this line.)

a) The gradient of a line is given by the equation (change in y)/(change in x). Therefore to find the gradient of the line in part a we must do (12-9)/(3-0) = 1. Now we have the gradient we can use the formula (y-y1)=m(x-x1). We know m=1 because m stands for the gradient. So we can substitute that into the equation so we have (y-y1)=1(x-x1). Then substitute either of the points into that formula. I will use (3,12) for this example. y-12=1(x-3). When we re-arrange this we can write it as y=x+9.b) We know that the gradient of a line perpendicular to another line is the negative reciprocal of the original line. Therefore we know that the gradient of the line in part b is -1. Similarly to part a we can use the formula (y-y1)=m(x-x1) so we have (y-y1)=-1(x-x1). Then we can substitute the point in part b so we have (y-14)=-1(x-3) which can be rearranged to give y=-x+17.

Answered by Rohil P. Maths tutor

3676 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I find two prime numbers whose sum is 30?


expand (x-3)^2


How do I find out the coordinates of the fourth point of a parallelogram knowing the first three?


A circular table top has diameter 140 cm. The volume of the table top is 17,150π cmᶟ. Calculate the thickness of the table top


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences