Solve the simultaneous equations : x^2 + y^2 = 13 and x = y - 5 .

Below is the solution to the aforementioned question. In order to solve a simultaneous equation, one has to write one of the unkown variables in terms of the other. In this case, x was already written in relation to y, which means we can replace x in the first equation with y - 5. This allows us to have an equation with only one unkown variable, y. We solve this equation and we end up with two possible solutions for y. We find out x in both those solutions and we have our answers. Below is the mathematical solution as well. x2+ y2 = 13 x = y - 5 (y - 5)2 + y2 = 13 (y - 5)(y - 5) + y2 = 13 y2-5y - 5y + 25 + y2 = 13 2y2-10y + 25 = 13 2y2-10y + 12 = 0 y2-5y + 6 = 0 (y - 3)(y - 2) = 0 y1= 3 and y2 = 2 x1 = (3) - 5 and x2 = (2) - 5 x1 = -2 and x2 = -3

Answered by Sebastian G. Maths tutor

13871 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is a product of prime factors?


Solve ((3x+2)/(x-1)) +3 =4


Why is it that when I am asked to factorise 3x^2-13x-10, I am not able to cancel two of the x's so that the answer is 3x-13-10?


x = 0.436363636... (recurring). Prove algebraically that x can be written as 24/55.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences