Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve

Firstly we need to find the stationary points, we know that when the first derivative of the curve is equal to 0, this means it is a stationary point as there is no effective gradient.
The first derivative is 3x^2 - 27. If we equal this to 0 and solve this we get (x-3)(x+3)=0. This means that there are two stationary points, one at x=3, and one at x=-3. If we then substitute these x values into the initial curve equation we can determine the corresponding y values, which are -54 and 54 respectively. This means that the two stationary points are (-3, 54) and (3, -54).
Now if want to determine the nature of the stationary points we look to the second derivative which is 6x. Once the x value is substituted in, a positive second value denotes a minimum point, a negative value denotes a positive, and a value of 0 denotes a point of substitution. We can find that the point of (-3,54) is a a local maxima, and (3, -54) is a local mimima.

Answered by Ahmed K. Maths tutor

4891 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Co-ordinate Geometry A-level: The equation of a circle is x^2+y^2+6x-2y-10=0, find the centre and radius of the circle, the co-ordinates of point(s) where y=2x-3 meets the circle and hence state what we can deduce about the relationship between them.


What is the equation of a curve with gradient 4x^3 -7x + 3/2 which passes through the point (2,9)?


Prove the identity: (cos θ + sin θ)/(cosθ-sinθ) ≡ sec 2θ + tan 2θ


How do I differentiate something of the form a^x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences