Solve the inequality |x - 2sqrt(2)| > |x - 4sqrt(2)|.

This problem can be solved by squaring both sides of the inequality, as this removes the modulus from the problem. Modulus or | | means that a term can take positive and negative values, which could also be described as, for example |x| = +- x. Since squaring removes the negative sign, the modulus is also removed. After this the brackets can be expanded on both sides of the inequality and the inequality can be rearranged to give the solution.

Answered by Jade A. Maths tutor

2757 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1


Let f(x) = 2x^3 + x^2 - 5x + c. Given that f(1) = 0 find the values of c.


Define the derivative of a function f(x) and use this to calculate the derivative of f(x)=x^n for positive integer n.


The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences