Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.

Use the formula cos(A+B)=cosAcosB-sinAsinB, Rcos(theta+alpha)=Rcos(alpha)cos(theta)-Rsin(alpha)sin(theta)5=Rcos(alpha)2=Rsin(alpha)tan(alpha)=2/5alpha= 0.381R=sqrt(5^2+2^2)=sqrt(29)So, 5cos(theta) – 2sin(theta) = sqrt(29)cos(theta+0.381)

JW
Answered by Joe W. Maths tutor

11300 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you find the minimum turning point of the function y = x^3 + 2x^2 - 4x + 10


Given that y=((4x+1)^3)sin2x. Find dy/dx.


y=4x/(x^2+5)


What is the differential of y =sin(2x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning