Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.

Use the formula cos(A+B)=cosAcosB-sinAsinB, Rcos(theta+alpha)=Rcos(alpha)cos(theta)-Rsin(alpha)sin(theta)5=Rcos(alpha)2=Rsin(alpha)tan(alpha)=2/5alpha= 0.381R=sqrt(5^2+2^2)=sqrt(29)So, 5cos(theta) – 2sin(theta) = sqrt(29)cos(theta+0.381)

Answered by Joe W. Maths tutor

10046 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation 2^x + y^2 = 2xy. How do I find dy/dx for the curve C?


Differentiate y=(3x-1)/(2x-1)


For a curve of equation 2ye^-3x -x = 4, find dy/dx


Core 3 - Modulus: Solve the equation |x-2|=|x+6|.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences