Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.

Use the formula cos(A+B)=cosAcosB-sinAsinB, Rcos(theta+alpha)=Rcos(alpha)cos(theta)-Rsin(alpha)sin(theta)5=Rcos(alpha)2=Rsin(alpha)tan(alpha)=2/5alpha= 0.381R=sqrt(5^2+2^2)=sqrt(29)So, 5cos(theta) – 2sin(theta) = sqrt(29)cos(theta+0.381)

JW
Answered by Joe W. Maths tutor

10677 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When I integrate by parts how do I know which part of the equation is u and v'?


how can differentiate using the product and chain rule? e.g y=(4x+1)^3(sin2x), find dy/dx.


Solve the inequality |x - 2sqrt(2)| > |x - 4sqrt(2)|.


Solve for x: logx(25) = log5(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences