Find the equation of the the tangent to the curve y=x^3 - 7x + 3 at the point (1,2)

yC=x3 - 7x + 3 ------> equation of curve.yT=mx+c ----------------> equation of tangent, where m is the gradient of the graph and c is the value of the y-intercept (the value of y when x=o)To find m, you must take the differential of curve, and substitute the value of x from (1,2) into it.m=3x2 -7, m= 3(1)2 -7, m=-4Now, the equation of the tangent looks like yT=-4x+C.In order to find C, Subsitute the values of the (2,1) in for x and y.2=-4(1)+C2+4=C, C=6Therefore the function of the tangent is yT=-4x+6

MB
Answered by Matthew B. Maths tutor

3106 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The probability distribution of the random variable X is given by the formula P(X = x) = 0.09+0.01x^2 for x= 1,2,3,4,5 ). Find E(X).


Find the integral of y=6/(e^x+2) using calculus.


Find the turning points of the curve y = 3x^4 - 8x^3 -3


Find dy/dx where y=e^(4xtanx)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences