y = arcsec(x), Find dy/dx.

The key to this problem is to apply sec to both sides, and then differentiate implicitly: sec(y)=x; dsec(y)/dx = 1; tan(y)sec(y)dy/dx = 1; dy/dx = 1/(tan(y)sec(y)). Then using the fact that sec(y)=x and tan2x + 1 = sec2x, we can rewrite our derivative in terms of x only: dy/dx = 1/(x√(x2-1))

Answered by Nicholas Y. Maths tutor

3767 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve 2sin2θ = 1 + cos2θ for 0° ≤ θ ≤ 180°


differentiate- X^3- 2X^2+3


If f(x)=7xe^x, find f'(x)


How would you integrate ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences