y = arcsec(x), Find dy/dx.

The key to this problem is to apply sec to both sides, and then differentiate implicitly: sec(y)=x; dsec(y)/dx = 1; tan(y)sec(y)dy/dx = 1; dy/dx = 1/(tan(y)sec(y)). Then using the fact that sec(y)=x and tan2x + 1 = sec2x, we can rewrite our derivative in terms of x only: dy/dx = 1/(x√(x2-1))

NY
Answered by Nicholas Y. Maths tutor

4832 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of (x+4)/x(2-x) .dx


Differentiate y= (3x^2+2x-6)^8


A circle with centre C has equation x^2 + y^2 +8x -12y = 12


What is the equation of a curve with gradient 4x^3 -7x + 3/2 which passes through the point (2,9)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning