Let a and b be positive real numbers. If x^2 + y^2<=1 then what is the largest that ax+by can get?

By the Cauchy-Schwartz inequality, we have (x2 + y2)(a2+b2) >= (ax+by)2.
This can be transformed into (ax+by)2 <= (x2 + y2)(a2+b2) <= 1 * (a2+b2) <= (a2+b2). Hence ax + by <= sqrt(a^2 + b^2) and the equality is achieved when there exists ay = bx.

TD
Answered by Tutor135762 D. MAT tutor

4110 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Find the number of solutions x in [0,2pi) to the equation 7sin x +2(cos x)^2 =5.


How many distinct real roots does the equation x^3 − 30x^2 + 108x − 104 = 0 have?


If a_(n+1) = a_(n) / a_(n-1), find a_2017


How do you differentiate ln(f(x))? Tricks like these occur commonly in STEP questions (including one I was looking at earlier today).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning