How do I solve fractions with unknowns in the denominators?

To solve the equation: (5x+3)/(x) + x = 1, where (x) is the denominator, we have to convert the equation into an equation without any denominators.

To do this, we multiply each variable by (x), so the equation becomes: (5x+3) + (x)(x) = (1)(x).

The next step is to expand the brackets: 5x + 3 + x^2  = x

After this, we move all variables onto one side of the equation (by subtracting x from both sides) so that it equals 0: x^2 + 4x + 3 = 0 

Factorsing this equation we get: (x + 3)(x + 1) = 0

Therefore, we can equate each bracket to 0, giving the solutions for x:

x + 3 = 0, x = -3

x + 1 = 0, x = -1

 
 

Answered by Sophie A. Maths tutor

4696 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify 24ab^2 / 6b


Solve the following for x: 2x^2-9x=5


How do I convert the following, 0.089, into standard form?


Factorise the following expression: x^2-1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences