Differentiate(dx) xy+4y-13

As this is not in the common form and is HomogeneousStudents should be confident to understand what differentiation does.Using the quotient rule as well as implicit differentiation we look at each part of the equation bit by bit.The differentiation of xy:This is a mixture of the chain rule and implicit differentiation.chain rule states : D/dx of ab is a(b(dx)) + b(a(dx))Therefore the differentiation of this is(x)(dy.dx)+y differentiation of 4y-13 :(4)dy/dx this is finished by adding both together finishing the question with the solution:(x)(dy.dx)+y+(4)dy/dx

NM
Answered by Nojus M. Maths tutor

2827 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Question 6 from Aqa 2017 June paper for C4, the vector question


Find the equation of the tangent to the curve y^3 - 4x^2 - 3xy + 25 = 0 at the point (2,-3).


A curve C has the equation x^3 +x^2 -10x +8. Find the points at which C crosses the x axis.


Where does integration by parts come from?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences