How do I expand a bracket to a negative power if it doesn't start with a 1.

Okay so consider (2 + x)^-1, we can only do the expansion we know if the bracket starts with a 1, to fix this we can factor a 2 out of the bracket so that it becomes (2(1 + x/2))^-1. Then by our rules of powers this is the same as 2^(-1)(1 + x/2)^(-1), 2^-1 = 1/2 and we can expand the remaining bracket as we have done before, so to get the first 3 terms we'd have:1/2(1 + (-1)(x/2) + (-1)(-2)(x/2)^2/2!)= 1/2(1 - x/2 + x^2/4)= 1/2 - x/4 + x^2/8

Answered by Shaun M. Maths tutor

3276 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x


Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


Differentiate y = 4ln(x)x^2


What is the determinant of a 2 by 2 matrix?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences