Answers>Maths>IB>Article

The function f has a local extreme at point (1,4). If f''(x)=3x^2+2x, then find f(0)?

A local extreme point would mean that f'(1)=0. Since integration is the inverse application of derivation, to obtain f'(x) function we integrate the f''(x) function. Bearing in mind the integration rule of increasing the power "n" to "n+1" and dividing the new number by "n+1", the integration of f''(x) would yield f'(x)=x^3+x^2+C (C is the constant generated by integrating and can be any constant value. (Remember, after derivation all constants are lost so we can not be certain whether such value of C is 0 or any other real number). As we know that f'(1)=0 (see first sentence), replacing x with 1 and solving the equation would lead to C=-2; thus, f'(x)= x^3+x^2-2.As we now have the f'(x) function, we can use similar integration methods to obtain f(x) function. Hence, f(x)=(x^4)/4+(x^3)/3-2x+C. The question itself provided that f(1)=4. Plugging in these values would give f(1)=1/4+1/3-2+C=4. Solving this, we obtain C=65/12, and f(x)=1/4+1/3-2+65/12. Finally, using this equation when x=0 , we get f(0)=65/12.

Answered by Moris T. Maths tutor

1050 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Having x(x+4)=y, calculate dy/dx


The quadratic function f(x) = p + qx – x^2 has a maximum value of 5 when x = 3. Find the value of p and the value of q.


What is proof by induction and how do I employ it?


In the arthmetic sequence, the first term is 3 and the fourth term is 12. Find the common difference (d) and the sum of the first 10 terms.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences