An electron is trapped within a square well potential of width 10 nm. What would be the wavelength of the photon emitted when an electron moves from the first energy level to the ground level.

Use energy difference between ground and first level to find E1-E0. Energy of the electron a nth energy level is found using En = (n^2pi^2hbar^2)/2mL^2Where n is the energy level plus 1, pi and hbar are constants, L is the width of the well in metres and m is the mass of the electron in kgFor E0 n=1 and E1 n=2 therefore E1-E0 = (3pi^2*(1.0510^-34)^2))/2(9.1110^-31)(1010^-9) = 1.810^-19 JThe energy can then converted to a wavelength using E=hf and c=flambda where h is Planck's constant, f is frequency in Hz and lambda is wavelength in metres and c is the speed of light constant This gives : E= hc/lambdaRe arrange to get lambda = hc/E = 1.10610^-6 metres or approximately 1.11 microns.

Answered by Aubin G. Physics tutor

1148 Views

See similar Physics IB tutors

Related Physics IB answers

All answers ▸

Outline why a given mass of water has more internal energy than the same mass of ice at the same pressure?


Alternating current produced by the generator in a nuclear power plant is supplied to the primary coil of a transformer. Explain, with reference to Faraday's law of electromagnetic induction, how a current arises in the secondary coil.


The diagram below represents a balloon just before take-off. The balloon’s basket is attached to the ground by two fixing ropes.Calculate the tension in either of the fixing ropes.


How do I calculate the speed of the International Space Station moving in a circular orbit around the Earth?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences