Why is a pendulum with a bob of the same size but larger mass than another bob damped more lightly?

The heavier bob has more kinetic energy/potential energy/momentum for any given amplitude of the two pendulums due to its larger mass, as each of these three quantities depend linearly on mass. The damping is due to air resistance and seeing as the bobs are the same size, we must consider the energy (potential/kinetic). The heavier bob will lose a smaller percentage of its energy per oscillation so it is therefore less heavily damped than the lighter bob.
We can also visualise this through inertia, where inertia is the resistance an object has to a change in its state of motion. Since greater mass = greater inertia, the heavier bob will have greater opposition to something, air resistance in this case, changing its state of motion.

LS
Answered by Lucy S. Physics tutor

9270 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

In terms of the photoelectric effect, what is the work function of a material?


A cylindrical rod of radius 7mm and Young’s Modulus 70 GPa has a weight F applied to it. The material experiences a strain of 0.2%. What force has been applied?


You are asked to find the Young modulus for a metal using a sample of wire. *(a) Describe the apparatus you would use, the measurements you would take and explain how you would use them to determine the Young modulus for the metal.


What are the main differences between magnetic and electric fields?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences