Solve the inequality |4x-3|<|2x+1|.

There are two ways to solve this problem. The easiest way is graphically, but that requires little explanation and I am not sure how to show graphs on here so I will explain it algebraically.Because both sides of the inequality sign have a modulus sign around them they somewhat will cancel out so that there are only two possible cases. The first is that (4x-3)<(2x+1). We can rearrange this to get 2x<4 and then divide both sides by 2 to get x<2. The other possible case is that (4x-3)>-(2x+1). In this case we can simplify to (4x-3)>(-2x-1). Then rearrange to get 6x>2. We then divide both sides by 6 to get x>(1/3). We can combine these answers to get (1/3)<x<2. I would then advise you to check the solution graphically.

Answered by Nathanael H. Maths tutor

7310 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the uses of derivatives in algebra?


let p be a polynomial p(x) = x^3+b*x^2+ c*x+24, where b and c are integers. Find a relation between b and c knowing that (x+2) divides p(x).


The gradient of the curve at point (x,y) is given by dy/dx = [7 sqrt(x^5)] -4. where x>0. Find the equation of the curve given that the curve passes through the point 1,3.


Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences