How do I differentiate an expression of the form y = (ax+b)^n?

In order to differentiate this we need to use the chain rule- first let u = ax + b. Then differentiating, du/dx = a. By substituting into the original expression, we can obtain y = u^n. Differentiating that gives dy/du = nu^(n-1). Since, using the chain rule, dy/dx = du/dx * dy/du = anu^(n-1). Subbing back in for u, we obtain our answer: an(ax+b)^(n-1).

SC
Answered by Sam C. Maths tutor

10888 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 9 sin^2y-2 sin y cos y=8 show that (tany - 4)(tany + 2)= 0


The volume of a cone is V = 1/3*pi*r^2*h. Make r the subject of the formula.


Sketch the curve with the equation y=x^2 +4x+4, labelling the points where it crosses or touches the axes.


How do you differentiate (3x+cos(x))(2+4sin(3x))?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning