How do I differentiate an expression of the form y = (ax+b)^n?

In order to differentiate this we need to use the chain rule- first let u = ax + b. Then differentiating, du/dx = a. By substituting into the original expression, we can obtain y = u^n. Differentiating that gives dy/du = nu^(n-1). Since, using the chain rule, dy/dx = du/dx * dy/du = anu^(n-1). Subbing back in for u, we obtain our answer: an(ax+b)^(n-1).

SC
Answered by Sam C. Maths tutor

10303 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When using the addition rule in probability, why must we subtract the "intersection" to find the "union" with the Addition Rule?


Given y = 2sin(θ) and x = 3cos(θ) find dy/dx.


Using mathematical induction, prove De Moivre's Theorem.


solve the simultaneous equation; x^2+y^2=10 2x+y=5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences