By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.

cos(2x)=cos2(x)-sin2(x)=2cos2(x)-1
Therefore:cos(2x)/cos2(x)=(2cos2(x)-1)/cos2(x)=2cos2(x)/cos2(x) - 1/cos2(x)=2 - 1/cos2(x)=2 - sec2(x)
Integral of sec2(x) = tan(x)
Integral of 2 = 2x
[2x - tan(x)] between pi/4 and pi/3
= (2pi/3 - tan(pi/3)) -(pi/2 - tan(pi/4))
= (2pi/3 - sqrt(3)) - (pi/2 - 1)
= pi/6 - sqrt(3) + 1

HF
Answered by Hugo F. Maths tutor

7822 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use logarithms to solve the equation 2^(n-3) = 18000, giving your answer correct to 3 significant figures.


An arithmetic progression has a tenth term (a10) = 11.1 and a fiftieth term (a50) = 7.1 Find the first term (a) and the common difference (d). Also find the sum of the first fifty terms (Sn50) of the progression.


AQA PC4 2015 Q5 // A) Find the gradient at P. B) Find the equation of the normal to the curve at P C)The normal P intersects at the curve again at the point Q(cos2q, sin q) Hence find the x-coordinate of Q.


Find the exact solution of the following equation: e^(4x-3) = 11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning