Answers>Maths>IB>Article

Given the function f(x)=λx^3 + 9, for λ other than zero, find the inflection point of the graph in terms of λ. How does the slope of the line tangent to the inflection point changes as λ varies from 0 to 1?

f'(x) = 3λx^2f''(x) = 6λxFor the inflection point (x0,y0), it is true that f''(x0)=0 so 6λxo=0 => x0= 0 (since λ cannot be zero)Therefore, the infelction point is (0,f(0)) => (0,9)The second part of the question is a trick question since any line tangent to th einfelction point of a graph is parallel with the x'x axis.

CD
Answered by Claire D. Maths tutor

2372 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve (sec (x))^2 + 2tan(x) = 0


Given two functions f and g where f(x)=3x-5 and g(x)=x-2. Find: a) the inverse f^-1(x), b) given g^-1(x)=x+2, find (g^-1 o f)(x), c) given also that (f^-1 o g)(x)=(x+3)/3, solve (f^-1 o g)(x)=(g^-1 o f)(x)


Why is (-1)*(-1)=1?


Differentiate y = e^(x^2 - 3x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning