Approximately how long is a double-stranded DNA molecule with a molecular weight of 3x10^9 g/mol? Assume the molecular weight of one nucleotide is 333 g/mol, and that there are 10 base pairs for each turn of the DNA helix equalling 3.4nm in length.

Let's begin by assessing the molecule. If we divide the molecular weight by two, that will give us the weight for one strand of the helix. Knowing that one nucleotide is 333 g/mol, then dividing the weight of one strand by 333 g/mol will yield the number of nucleotides comprising that strand.
We also know that every 10 nucleotides, the helix turns, measuring 3.4nm. Therefore, dividing the number of nucleotides in the strand by ten will reveal the number of helical turns, each being 3.4nm in length. Finally, multiplying the number of helical turns by 3.4nm will yield our answer.

Related Human Biology A Level answers

All answers ▸

Describe the role of the heart and lungs in the oxygenation of blood in humans. Why is oxygen is essential for the functioning of the human body.


Why do cells first transcribe messenger RNA from DNA and then translate messenger RNA to protein? Why not directly translate DNA to protein?


What are the major parts of a neuron? What are the three types of nerve cells?


Why is atrial repolarisation not present on an ECG yet ventricular repolarisation is?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences