integrate cos^2(2x)sin^3(2x) dx

To integrate this we need to use the chain rule, substituting cos2x = u Integral becomes: u2sin32x dxChain rule: dy/dx = du/dx dy/du du/dx = -2sin2x --> dx = -1/2sin2x du Substituting into the equation u2sin32x * -1/2sin2x du Simplifies to: -2u2sin22x duWe know that cos2x + sin2x =1 Integral = -2u2(1 - cos22x) du Substituting -> -2u2 + 2u4 duIntegrating this: -2( 1/3u3 - 1/5u5) + c Substituting u back into the equation: cos52x/10 - cos32x/6 + c


LW
Answered by Lucy W. Maths tutor

6867 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y-2x-4 = 0 (1) , 4x^2 +y^2 + 20x = 0 (2)


Integrate (x)(e^x) with respect to x and then integrate (x)(e^x) with respect to y.


How does the product rule for differentiation work


Given y=2x(x^2-1)^5, show that dy/dx = g(x)(x^2-1)^4 where g(x) is a function to be determined.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences