Solve int(ln(x)dx)

To solve this we must use integration by parts: int(udv) = uv - int(vdu) (1) Hence let u = ln(x), dv = dx => du=(1/x)dx, v=x, and now using (1) and substituting values we obtain int(ln(x)dx) = ln(x)x - int(x(1/x)dx) = ln(x)x - int(dx) = xln(x) - x + C

GB
Answered by George B. Maths tutor

3263 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 5x^3 + 7x + 3, find dy/dx


Express X/((X+1)(X+2)) in partial fractions. OCR C4 style question


If we have a vector 4x + 6y + z and another vector 3x +11y + 2z then what is the angle between the two?Give the answer in radians


A general function f(x) has the property f(-x)=-f(x). State a trigonometric function with this property and explain using the Maclaurin series expansion for this function why this property holds. Write down the integral in the limits -q to q of f(x) wrt x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning