Solve int(ln(x)dx)

To solve this we must use integration by parts: int(udv) = uv - int(vdu) (1) Hence let u = ln(x), dv = dx => du=(1/x)dx, v=x, and now using (1) and substituting values we obtain int(ln(x)dx) = ln(x)x - int(x(1/x)dx) = ln(x)x - int(dx) = xln(x) - x + C

Answered by George B. Maths tutor

2816 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area enclosed between the curves y = f(x) and y = g(x)


Differentiate y = x sin(x)


How can the trapezium rule be used to estimate a definite integral?


Integrate ln(x/7) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences