Solve int(ln(x)dx)

To solve this we must use integration by parts: int(udv) = uv - int(vdu) (1) Hence let u = ln(x), dv = dx => du=(1/x)dx, v=x, and now using (1) and substituting values we obtain int(ln(x)dx) = ln(x)x - int(x(1/x)dx) = ln(x)x - int(dx) = xln(x) - x + C

Answered by George B. Maths tutor

2769 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the reultant force acting on an object sitting on a slope?


Integrate $$\int xe^x \mathop{\mathrm{d}x}$$.


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line y = mx + 7. Find the value of m.


What is a derivative?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences