Solve int(ln(x)dx)

To solve this we must use integration by parts: int(udv) = uv - int(vdu) (1) Hence let u = ln(x), dv = dx => du=(1/x)dx, v=x, and now using (1) and substituting values we obtain int(ln(x)dx) = ln(x)x - int(x(1/x)dx) = ln(x)x - int(dx) = xln(x) - x + C

GB
Answered by George B. Maths tutor

3598 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does ln(x) differentiate to 1/x ?


What is the integral of sin^2(x)?


Express 4x/(x^2-9)-2/(x+3) as a single fraction in its simplest form


Differentiate Y = 4X/(X^2+5) and give dy/dx in its simplest form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning