Differentiate y = ln (3x + 2)

The equation for the derivative of the natural log is dy/dx = f'(x)/f(x) where f(x) = the contents of the natural log, in this case 3x+2. So, to get dy/dx we first need f'(x), the derivative of f(x). This is 3, as the first terms x power decreases to 0, making it equal 3*1 and the constant becomes zero. This means dy/dx 3/3x+2.

Answered by Will S. Maths tutor

18100 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y^3 - 4x^2 - 3xy + 25 = 0 at the point (2,-3).


Sketch, on a pair of axes, the curve with equation y = 6 - |3x+4| , indicating the coordinates where the curve crosses the axes, then solve the equation x = 6 - |3x+4|


(FP3 question). Integrate 1/sqrt(3-4x-x^2).


What is integration?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences