Factorising Quadratics: x ^2 ​​ − x = 12

Factorising a quadratic basing means 'putting it into 2 brackets'. The standard format for a quadratic equation is:ax^2 + bx + c = 0. You'll usually find that this becomes a lot easier when a=1. As well as factorising the quadratic you might be asked to solve it. This just means finding the values of x which make each bracket 0.So to begin, always start by rearranging into the standard format: x^2 - x - 12 = 0. Then write down the two brackets with the x's in : (x )(x ) = 0. Then find two numbers which multiply to give '-12' but also add/subtract to give '-1'. From a little trial and error we know that 3 and 4 add/subtract to give -1 and multiply to give 12. So we can now put 3 and 4 into the brackets and expand the brackets to check (x+3)(x-4)= x^2 - x -12. Congrats, we've now factorised it!Now to solve the equation, set each bracket equal to 0 and solve for x : (x+3) = 0 => x=-3 and (x-4)= 0 => x =4

Answered by Avishka D. Maths tutor

4135 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A field is 90m x 45m, next to a circular lake, 20m across. For training, the coach says your team can either run around the lake 3 times or run along 2 sides of the pitch and then back along the diagonal. Which run is the shortest?


What are the possible value(s) of x for the following: x^2 + 3x - 54 = 0


how do you know if two straight lines on a graph are parallel or perpendicular?


Solve (4x10^-3)x(9x10^4)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences