Solve the equation sec^2(A) = 3 - tan(A), for 0<= A <= 360 (degrees)

Using simple trig identities, we know tan^2(A) + 1 = sec^2(A).Substituting for sec^2(A) into our equation, we get: tan^2(A) + 1 = 3 - tan(A).Moving this over to one side, we get the quadratic in terms of tan(A), tan^2(A) +tan(A) - 2 = 0.Now we can solve since the equation is equal to 0, so we can factorise in terms of tan(A).(Tan(A) - 1)(Tan(A) + 2) = 0Since both brackets must be equal to zero, tan(A) = 1, and tan(A) = -2Now if you perform arctan on these two values, you get A = 45, 225 or 116.6, 296.6

Answered by Lachlan F. Maths tutor

3026 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

2(x^2)y + 2x + 4y – cos (PI*y) = 17. Find dy/dx using implicit differentiation.


How do I use the product rule for differentiation?


Find the coordinates of the stationary points of the curve 3x=y+6x+3


How do I know which is the null hypothesis, and which is the alternative hypothesis?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences