Solve the equation sec^2(A) = 3 - tan(A), for 0<= A <= 360 (degrees)

Using simple trig identities, we know tan^2(A) + 1 = sec^2(A).Substituting for sec^2(A) into our equation, we get: tan^2(A) + 1 = 3 - tan(A).Moving this over to one side, we get the quadratic in terms of tan(A), tan^2(A) +tan(A) - 2 = 0.Now we can solve since the equation is equal to 0, so we can factorise in terms of tan(A).(Tan(A) - 1)(Tan(A) + 2) = 0Since both brackets must be equal to zero, tan(A) = 1, and tan(A) = -2Now if you perform arctan on these two values, you get A = 45, 225 or 116.6, 296.6

LF
Answered by Lachlan F. Maths tutor

3677 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the tangent to the curve y=4x^2 - 7x at x = 2


Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0


Differentiate y=(4x^2-1)^3


Find the equation of the tangent to the curve y=3x^3+x^2+5 at the point (1,9)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning