Use integration to find the exact value of [integral of] (9-cos^2(4x)) dx

  1. you cannot integrate cos^2(4x) without making substitutions first. Use the cos^2(x) + sin^2(x) = 1 identity with the cos(2x)=cos^2(x)-sin^2(x), rearrange to get the identity cos(2x) = 2cos^2(x) - 1, then cos^2(x) = 0.5(cos(2x)+1)
    2) use this new identity to rewrite 6cos^2(4x), which will become 3cos(8x)+3
    3) integrate the constant 9 to become 9x
    4) integrate -(3cos(8x)+3) to get -(3/8sin(8x) - 3x)
    5) final answer is 6x - 3/8(sin(8x))
AF
Answered by Anna F. Maths tutor

7499 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)


How do you show that two lines do, or do not intersect?


A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.


Differentiate the equation y^2 + y = x^3 + 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning