y = 4sin(x)cos(3x) . Evaluate dy/dx at the point x = pi.

By product rule:u = 4sin(x) v = cos(3x)du/dx = 4cos(x) dv/dx = -3sin(3x)dy/dx = u (dv/dx) + v (du/dx)dy/dx = 4sin(x) * -3sin(3x) + cos(3x) * 4cos(x)dy/dx = -12sin(x)sin(3x) + 4cos(x)cos(3x)Evaluate at x = pi . dy/dx = 4.

WF
Answered by Will F. Maths tutor

4396 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using methods of substitution solve the following simultaneous equations: y - 2x - 1 = 0 and 4x^2 + y^2 - 25 = 0


A particle of mass 0.8 kg moving at 4 m/s rebounds of a wall with coefficient of restitution 0.3. How much Kinetic energy is lost?


d/dx ( sin x) ^3


Differentiate with respect to x y=(x^3)ln2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning