solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.

3sinh^2(2x) + 11sinh(2x) - 4 = 0 --> (3sinh(2x) - 1)(sinh(2x) + 4) = 0 --> sinh(2x) = 1/3, sinh(2x) = -4(e^(2x) - e^(-2x))/2 = 1/3 --> e^(4x) -(2/3)e^(2x) - 1 = 0 --> e^(2x) = 1/3 + 2sqrt(5)/3 the other solution is negative, e^2x > 0--> x = (1/2)ln(1/3 + 2sqrt(5)/3)(e^(2x) - e^(-2x))/2 = -4 --> e^(4x) - 8e^(2x) - 1 = 0 --> e^(2x) = 4 + sqrt(34) sqrt(34) > 4 so other solution is negative--> x = (1/2)ln(4 + sqrt(34))

Related Further Mathematics A Level answers

All answers ▸

Using the substitution u = ln(x), find the general solution of the differential equation y = x^2*(d^2(y)/dx^2) + x(dy/dx) + y = 0


Write (1+2i) /(2-i) in form x+iy


Define tanh(t) in terms of exponentials


A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences