Differentiate: f(x)=2(sin(2x))^2 with respect to x, and evaluate as a single trigonometric function.

f(x) = 2sin2(2x)Therefore, using the chain rule: f'(x)=2 x 2cos(2x) x 2sin(2x)(The 2 at the front arises from the constant 2, at the start of f(x), the 2cos(2x) comes from differentiating sin2(2x), then the 2sin(2x) comes from decreasing the original power of the sine function by 1 and multiplying by the constant in the function, 2)Therefore, f'(x)=6cos(2x)sin(2x)As we know 2sin(x)cos(x)=sin(2x) (double-angle formula), we can simplify f'(x) into f'(x)=3sin(4x)

Answered by Sam H. Maths tutor

4081 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate sin(5x) and 3cos(x) and 3tan(5x)


Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


How do you go about sketching a curve when all you are given is the equation?


The line AB has equation 5x+3y+3=0. It is parallel to a line with equation y=mx+7. What is m?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences