Prove by induction the sum of n consecutive positive integers is of the form n(n+1)/2.

As proof by induction goes we always have to show that it works for the base case, which in this case is the very first positive integer:1. So we show that the sum of the first number(s) is equal to one which it is as 1=1, then replace n with 1 and we can see that 1(1+1)/2 = 2/2 = 1. So this result is true for n=1, now we use the inductive step and we assume that the result is true for some positive integer k. So the sum 1+2+3+...+(k-1)+k = k(k+1)/2.Now we need to consider the sum of k+1 positive integers (we're looking to find that the sum from 1 to k+1 is equal to (k+1)((k+1)+1)/2. So consider the sum 1+2+3+...+k+(k+1). From our assumption we know that sum from 1 to k is k(k+1)/2 so replace it with that and we get: k(k+1)/2 + k+1, with some rearranging we can find that (1/2)(k^2+k+2k+1) which we can factorise to (k+1)(k+2)/2 which is of the form we want and therefore the proof is complete. Now make a conclusion about it, so if it's true for any positive integer, k , then we've shown for it to be true every k+1, and since it's true for n=1, then it must be true for every positive integer greater than or equal to 1.

PS
Answered by Patryk S. Further Mathematics tutor

6674 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.


Are we able to represent linear matrix transformations with complex numbers?


Prove, by induction, that 4^(n+1) + 5^(2n-1) is always divisible by 21


Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences