Solve the simultaneous equation by elimination: 3x + y = 11 and 5x + y = 4

Simultaneous equations have at least two unknowns that must have the same value in each equation. This means the value of x and y in both equations must be the same. To solve this by elimination, the aim is to first remove one of the unknowns and then calculate the other. In this case, variable y has the same coefficient of 1 in both equations so it can be "eliminated" by subtracting the two equations. The trick is to subtract each term: 3x - 5x = -2x; y - y = 0; 11- 4 = 7 Hence, we're left with: -2x = 7. By dividing both sides of the equation by -2, we can see that x = -3.5. Now we can find the value for y using any of the equations. Using the first equation, if we plug in x = -3.5, we have -10.5 + y = 11; by adding 10.5 to both sides of the equation, we get y = 21.5. To cross-check the answer, plug in the value of x (-3.5) and y (21.5) to both equations to ensure you get 11 and 4 respectively. If you don't, you've made a mistake somewhere along the line. x = -3.5 and y = 21.5 are the unique solutions to these equations.

Answered by Moyin A. Maths tutor

3285 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a sale, an item originally worth £140 is reduced by 15%. What is the new price of the item ?


How do I expand brackets by multiplication?


In year 11, 3/7 of pupils go on holiday abroad in the summer break. Out of these, 1/3 go to France. Determine the ratio of pupils who go to France in summer to pupils who do not go to France in summer.


Square root of 81?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences