Solve the simultaneous equation by elimination: 3x + y = 11 and 5x + y = 4

Simultaneous equations have at least two unknowns that must have the same value in each equation. This means the value of x and y in both equations must be the same. To solve this by elimination, the aim is to first remove one of the unknowns and then calculate the other. In this case, variable y has the same coefficient of 1 in both equations so it can be "eliminated" by subtracting the two equations. The trick is to subtract each term: 3x - 5x = -2x; y - y = 0; 11- 4 = 7 Hence, we're left with: -2x = 7. By dividing both sides of the equation by -2, we can see that x = -3.5. Now we can find the value for y using any of the equations. Using the first equation, if we plug in x = -3.5, we have -10.5 + y = 11; by adding 10.5 to both sides of the equation, we get y = 21.5. To cross-check the answer, plug in the value of x (-3.5) and y (21.5) to both equations to ensure you get 11 and 4 respectively. If you don't, you've made a mistake somewhere along the line. x = -3.5 and y = 21.5 are the unique solutions to these equations.

MA
Answered by Moyin A. Maths tutor

4262 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 4x + 7y = 1, 3x + 10y = 15.


An exam has two papers. Alan scores: 33 out of 60 on paper 1 & 75 out of 100 on paper 2. Work out his percentage score for the exam?


Prove that the sum of four consecutive whole numbers will always be even.


Circle the number that is closest in value to (1.1)/(0.0204) [From selection of 5, 6, 50, 60] [Edit of 2018 Paper 1 Q4]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning