How do you calculate the angle between two vectors?

The formula axb = |a||b|sinθ is given in the formula bookletTherefore, θ, the angle between both vectors a and b is equal to sin-1 ((axb)/(|a||b|))Remember, axb can be found by multiplying a and b together as matrices (if a reminder is needed on how to do this, I'll show you on a whiteboard); and |a| can be found by square rooting all the components of a squared (e.g. square root of ai2+ aj2 + ak2 if the vector is three dimentional).

Answered by Gabriel Thomas N. Maths tutor

3237 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I solve quadratic equation by completing the square : X^2 - 4X = 5


y = 2ln(2x + 5) – 3x/2 , x > –2.5 find an equation to the normal of the curve when x = -2


A curve has the equation y=3x^3 - 7x^2+52. Find the area under the curve between x=2 and the y-axis.


y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences