What is the escape velocity of an object leaving a planet mass M, radius R?

As the object leaves the surface of the planet, it loses kinetic energy and gains gravitational potential energy. Through conservation of energy we know the loss of kinetic energy must be equal to the gain of gravitational potential energy. This gives us an equation with initial kinetic energy minus final kinetic energy (as it is the loss of kinetic energy) on one side, and final GPE minus initial GPE on the other side, taking care to remember GPE is negative.
0.5mu2 - 0.5mv2 = (-GMm/r2) - (-GMm/r1)
0.5m(u2 - v2) = -GMm(1/r2 - 1/r1)
In order to have just enough velocity to escape, the velocity must be 0 at ininity. If it was any less it would just slowly fall back to the planet. So if we make r2 infinitely large, and v = 0, we get the following:
0.5m(u2) = -GMm(0 - 1/r1)
0.5mu2 = GMm/r1
We can cancel m:
0.5u2 = GM/r1
And rearrange for u:
u = (2GM/R)1/2

Answered by Thomas R. Physics tutor

2061 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Water flows through an electric shower at a rate of 6kg per minute. Assuming no heat is transferred to the surroundings, what power is required to heat the water by 20K as it flow through the shower?


In an electric propulsion system, alpha particles are accelerated through a potential difference of 100kV at an average rate of 10^20 alpha particles per second. Calculate the average thrust the system can provide.


Why is an object that moves in a circular path accelerating when it has constant speed?


What do you understand by simple harmonic motion?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences