How do you find a turning point of a function using differentiation?

To find the location of turning points on a function, find the first derivative of the function, and then set the result to 0. if you then solve this equation, you will find the locations of the turning points. To find what type of turning point it is, find the second derivative (i.e. differentiate the function you get when you differentiate the original function), and then find what this equals at the location of the turning points. If it's positive, the turning point is a minimum. If negative it is a maximum, and if it is equal to 0 it is a Inflection point.

NS
Answered by Nathan S. Maths tutor

56881 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A girl saves money over 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. Find the amount she saves in Week 200. Calculate total savings over the 200 week period.


What is the gradient of y = xcos(x) at x=0?


A trolley of negilible mass on horizontal tracks is at rest. A person of mass 50kg is standing on the trolley with a bag of mass 10kg. The person throws the bag off the trolley horizontally with a velocity of 3m/s. Calculate the velocity of the man.


How to expand squared brackets?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning