How do you find a turning point of a function using differentiation?

To find the location of turning points on a function, find the first derivative of the function, and then set the result to 0. if you then solve this equation, you will find the locations of the turning points. To find what type of turning point it is, find the second derivative (i.e. differentiate the function you get when you differentiate the original function), and then find what this equals at the location of the turning points. If it's positive, the turning point is a minimum. If negative it is a maximum, and if it is equal to 0 it is a Inflection point.

NS
Answered by Nathan S. Maths tutor

54424 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the curve with equation y=x^2-6x+9 and the line with equation y=-x do not intersect.


A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)


Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve


The equation 5x sqaured + px + q , where p and q are constants, has roots α and α + 4. (a) Show that p squared = 20q +400.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning