How do you find a turning point of a function using differentiation?

To find the location of turning points on a function, find the first derivative of the function, and then set the result to 0. if you then solve this equation, you will find the locations of the turning points. To find what type of turning point it is, find the second derivative (i.e. differentiate the function you get when you differentiate the original function), and then find what this equals at the location of the turning points. If it's positive, the turning point is a minimum. If negative it is a maximum, and if it is equal to 0 it is a Inflection point.

Answered by Nathan S. Maths tutor

49840 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I invert a 2x2 square matrix?


find the value of dy/dx at the point (1,1) of the equation e^(2x)ln(y)=x+y-2


How do you find dy/dx for a set of parametric equations?


Given that y=((4x+1)^3)sin2x. Find dy/dx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences