How do you find a turning point of a function using differentiation?

To find the location of turning points on a function, find the first derivative of the function, and then set the result to 0. if you then solve this equation, you will find the locations of the turning points. To find what type of turning point it is, find the second derivative (i.e. differentiate the function you get when you differentiate the original function), and then find what this equals at the location of the turning points. If it's positive, the turning point is a minimum. If negative it is a maximum, and if it is equal to 0 it is a Inflection point.

Answered by Nathan S. Maths tutor

43653 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A machine is used to manufacture custom spoilers for two types of sports car( Car A and Car B0. Each day, in a random order, n are produced for Car A and m for Car B. What is the probability that the m spoilers for Car B are produced consecutively?


What is a limit?


Differentiate x^3 − 3x^2 − 9x. Hence find the x-coordinates of the stationary points on the curve y = x^3 − 3x^2 − 9x


Solve the equation 3x^2/3 + x^1/3 − 2 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences