x + y = 11, and x^2 + y^2 = 61, Work out values of y in the form of x

This is a simultaneous equation question, and it is important to read the question and pick out the information we want, and see what we are trying to get to, then work out a pathway on how we will get to it:we are give 1) x + y = 11, and 2) x2 + y2 = 61so we can rearrange equation 1 so it is x = 11- y, the substitute this into equation 2.so we then get (11-y)2 + y2 = 61, all you did was replace x2 in equation 2 because we found out what x was by rearranging equation 1. Now you expand the brackets to get (121 - 22y + y2) + y2 = 61which is 2y2 -22y + 121 = 61, then you minus 61 on both sides so your equation is equal to 0,2y2 -22y + 60 = 0 so y =√(11x−30) or y=−√(11x−30) (you will get +/- as it a root)

Answered by Venkat V. Maths tutor

3452 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 5x + y = 21, x - 3y = 9


The equation of the line L1 is y=3x–2. The equation of the line L2 is 3y–9x+5=0. Show that these two lines are parallel.


Solve the following simultaneous equations. x^2+y^2=25. y-3x=13


Change the subject of the formula F=(t^2+4b)/c to b.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences