How to differentiate y=x^3+4x+1 when x=3

First of all you calculate dy/dx. To do this you look at each x individually. For the first x you multiply it by it's power and then minus 1 from the power to get 3x^2. Then multiply the next x by the power and minus 1 to get 4x. As 1 is the same as 1 multiplied by x^0, this means that you multiply 1 by 0 to get 0. Therefore dy/dx is 3x^2 + 4. Now substitute in x=3 to get dy/dx=31. This is the gradient.

Answered by Leana S. Maths tutor

2667 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.


How can you factorise expressions with power 3 or higher?


A curve is defined by the parametric equations x=t^2/2 +1 and y=4/t -1. Find the gradient of the curve at t=2 and an equation for the curve in terms of just x and y.


Solve the simultaneous equations: y-2x-4 = 0 (1) , 4x^2 +y^2 + 20x = 0 (2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences