Rationalise the fraction : 5/(3-sqrt(2))

To rationalise a fraction we have to eliminate the surds in the denominator. We know we can multiply the top and the bottom of a fraction by the same thing, as this is equivalent to multiplying by 1. Notice that(3-sqrt(2))(3+sqrt(2))=9-3sqrt(2)+3sqrt(2)-2=9-2=7Then we can multiply the fraction by (3+sqrt(2))/(3+sqrt(2)) to eliminate the surd in the denominator.5/(3-sqrt(2)) = 5/(3-sqrt(2)) x 1 = 5/(3-sqrt(2)) x (3+sqrt(2))/(3+sqrt(2)) = 5(3+sqrt(2))/(3-sqrt(2))(3+sqrt(2)) = 5(3+sqrt(2)/7

MM
Answered by Michael M. Maths tutor

3776 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x=t^2/2 +1, y=4/t -1. Find the gradient of the curve when t =2.


Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


Solve for 0<=θ<π, the equation sin3θ-(sqrt3)cosθ=0 (C2)


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences