Rationalise the fraction : 5/(3-sqrt(2))

To rationalise a fraction we have to eliminate the surds in the denominator. We know we can multiply the top and the bottom of a fraction by the same thing, as this is equivalent to multiplying by 1. Notice that(3-sqrt(2))(3+sqrt(2))=9-3sqrt(2)+3sqrt(2)-2=9-2=7Then we can multiply the fraction by (3+sqrt(2))/(3+sqrt(2)) to eliminate the surd in the denominator.5/(3-sqrt(2)) = 5/(3-sqrt(2)) x 1 = 5/(3-sqrt(2)) x (3+sqrt(2))/(3+sqrt(2)) = 5(3+sqrt(2))/(3-sqrt(2))(3+sqrt(2)) = 5(3+sqrt(2)/7

Answered by Michael M. Maths tutor

3619 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 4/x^2


The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.


Consider the function F(x)=17(x^4)+13(x^3)+12(x^2)+7x+2. A) differentiate F(x) B)What is the gradient at the point (2,440)


The curve C has the equation: 16y^3 +9x^2y-54x=0, find the x coordinates of the points on C where dy/dx = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences