Rationalise the fraction : 5/(3-sqrt(2))

To rationalise a fraction we have to eliminate the surds in the denominator. We know we can multiply the top and the bottom of a fraction by the same thing, as this is equivalent to multiplying by 1. Notice that(3-sqrt(2))(3+sqrt(2))=9-3sqrt(2)+3sqrt(2)-2=9-2=7Then we can multiply the fraction by (3+sqrt(2))/(3+sqrt(2)) to eliminate the surd in the denominator.5/(3-sqrt(2)) = 5/(3-sqrt(2)) x 1 = 5/(3-sqrt(2)) x (3+sqrt(2))/(3+sqrt(2)) = 5(3+sqrt(2))/(3-sqrt(2))(3+sqrt(2)) = 5(3+sqrt(2)/7

Answered by Michael M. Maths tutor

3353 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate Cos^2(x)


Differentiate y=x(e^x)


what does 'differentiation' mean?


Consider the infinite series S=Σ(from n=0 to infinite) u(down n) where u(down n)=lim (from n π to (n+1) π) ((sin t)/t) dt. Explain why the series is alternating.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences