Rationalise the fraction : 5/(3-sqrt(2))

To rationalise a fraction we have to eliminate the surds in the denominator. We know we can multiply the top and the bottom of a fraction by the same thing, as this is equivalent to multiplying by 1. Notice that(3-sqrt(2))(3+sqrt(2))=9-3sqrt(2)+3sqrt(2)-2=9-2=7Then we can multiply the fraction by (3+sqrt(2))/(3+sqrt(2)) to eliminate the surd in the denominator.5/(3-sqrt(2)) = 5/(3-sqrt(2)) x 1 = 5/(3-sqrt(2)) x (3+sqrt(2))/(3+sqrt(2)) = 5(3+sqrt(2))/(3-sqrt(2))(3+sqrt(2)) = 5(3+sqrt(2)/7

MM
Answered by Michael M. Maths tutor

4261 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express cos(2x) in terms of acos^2(x) + b


Given y=2x(x^2-1)^5, show that dy/dx = g(x)(x^2-1)^4 where g(x) is a function to be determined.


Calculate the derivative of the following function: f(x)=cos(3x))^2


What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning