Differentiate: tan(2x) cos(x)

  1. Explain the product rule: d/dx ( f(x) . g(x) ) = f'(x).g(x) = g'(x) . f (x)
    2. Briefly run through trigonometric derivatives.* cos (x) differentiates to: -sin(x)* tan (x) differentiates to: sec^2 (x)
    3. Briefly run through the chain rule.* tan (2x) differentiates to: 2 sec^2 (2x)
    4. Bring everything together to get the two terms for the answer
    * First term of the solution is: [ 2 sec^2 (2x) . cos (x) ]* Second term of the solution is: [ - sin (x) . tan (2x) ]
    * Final Solution is: [ 2 sec^2 (2x) . cos (x) ] + [ - sin (x) . tan (2x) ]
Answered by Shreyasi D. Maths tutor

4959 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.


Find the location of the turning point of the following curve, y = x^2 + 6x - 7


Find the inverse of a 2x2 matrix


Solve 29cosh x – 3cosh 2x = 38 for x, giving answers in terms of natural logarithms


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences