Differentiate: tan(2x) cos(x)

  1. Explain the product rule: d/dx ( f(x) . g(x) ) = f'(x).g(x) = g'(x) . f (x)
    2. Briefly run through trigonometric derivatives.* cos (x) differentiates to: -sin(x)* tan (x) differentiates to: sec^2 (x)
    3. Briefly run through the chain rule.* tan (2x) differentiates to: 2 sec^2 (2x)
    4. Bring everything together to get the two terms for the answer
    * First term of the solution is: [ 2 sec^2 (2x) . cos (x) ]* Second term of the solution is: [ - sin (x) . tan (2x) ]
    * Final Solution is: [ 2 sec^2 (2x) . cos (x) ] + [ - sin (x) . tan (2x) ]
SD
Answered by Shreyasi D. Maths tutor

5548 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u = 2^x to find the exact value of ⌠(2^x)/(2^x +1)^2 dx between 1 and 0.


Solve the inequality x^2 – 5x – 14 > 0.


Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


Find the solution(s) of 3(x^2)-6x+2=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences