a) Express 4(cosec^2(2x)) - (cosec^2(x)) in terms of sin(x) and cos (x) and hence b) show that 4(cosec^2(2x)) - (cosec^2(x)) = sec^2(x)

A) 4(cosec2(2x)) - (cosec2(x)) = 4/(sin2(2x)) - 1/(sin2(x)) = 4/[(2 sin(x) cos(x))2] - 1/(sin2(x)) B) 4/[(2 sin(x) cos(x))2] - 1/(sin2(x)) = 4/(4 sin2(x) cos2(x)) - 1/(sin2(x)) = 1/(sin2(x) cos2(x)) - cos2(x)/[sin2(x)cos2(x)] = {Using 1 - cos2(x) = sin2(x)} = sin2(x)/(sin2(x)cos2(x)) = 1/(cos2(x)) = sec2(x)

Answered by Mario R. Maths tutor

16824 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f'(x)=3x(x - 1), find f(x)


Integrate the following fraction w.r.t. x: (sqrt(x^2 + 1)-sqrt(x^2 - 1))/(sqrt(x^4 - 1))


A particle of mass 0.25 kg is moving with velocity (3i + 7j) m s–1, when it receives the impulse (5i – 3j) N s. Find the speed of the particle immediately after the impulse.


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences