Integrate the natural logarithm of x (ln x) with respect to x

In order to integrate ln x you have to use integration by parts, even though it appears there is only one term to be integrated. We get around this by instead writing it as (ln x)(1), where we treat the 1 as another function of x. Now we can apply the integration by parts rule by setting u = ln x and dv/dx = 1.
Integration by parts states that the integral of u(dv/dx) = uv - the integral of v(du/dx). Integrating v(du/dx) is easy because we know that d/dx(ln x) = 1/x, and the integral of 1 is x, so the two cancel and we are left with integrating 1 again. Once integrated fully, the answer will be x[(ln x) - 1] (+c) where c is the constant of integration.

Answered by Archie D. Maths tutor

2999 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integral of (tan(x))dx using the substitution u = cos(x)


Do the circles with equations x^2 -2x + y^2 - 2y=7 and x^2 -10x + y^2 -8y=-37 touch and if so, in what way (tangent to each other? two point of intersection?)


How would you solve the inequality x^2-2x-8 >= 0?


What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences