How do I find the angle between 2 vectors?

First, we need to recall 2 basic definitions of vector operations:

The dot product is defined on vectors u=[u1, u2,...un] and v=[v1, v2,..., vn] as u . v = u1v1+u2v2+...+unvn
The length (norm) of a vector v=[v1, v2,..., vn] is the nonnegative scalar defined as ||v||=√(v . v)=√(v12+v22+...+vn2)
Note that u & v must be the same size to compute the dot product.

Now the formula for the angle, θ, between 2 vectors is as follows:

            cos(θ)=(u . v)/(||u|| ||v||)

Notice that u & v can be any size so long as they are both the same size. That is, this formula can be used to find the angle between vectors in 2 dimensions and also to find the angle between vectors in 100 dimensions, however hard that is to imagine.

A handy rearrangement of that formula to isolate θ is:

θ=cos-1( (u . v)/(||u|| ||v||) )
           

 

CH
Answered by Christopher H. Maths tutor

5479 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of f(x)=x^3 sin(x)


Why does 'x' need to be in radians to differentiate 'sin x'?


A particle of mass 5kg is held at rests on a slope inclined at 30 degrees to the horizontal. The coefficient of friction for the slope is 0.7, determine whether the particle will move when released.


What is the product rule and when do you use it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning